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Abstract. The feasibility of recovering the fractal dimension of self-similar fractals from 
the back-scattering measurements is demonstrated. For this purpose, the well known 
Sierpinski gasket is modelled as an ensemble of lossless dielectric beads, and the scattered 
field computations are carried out using the coupled dipole approximation procedure. 

Recently, attention has been focused upon the ways and means of determining the 
fractal dimension of structures endowed with the appropriate attributes, which methods 
are sufficiently different from the use of counting statistics to establish either the radius 
of gyration [ l ]  or the density-density correlation function [2]. One of these newer 
procedures consists of optically taking the spatial Fourier transform of the fractal 
structure: the theoretical feasibility of this technique has been recently reported by us 
elsewhere [3], and it has been experimentally implemented by Allain and Cloitre [4]. 
Because it has also been shown that the neutron diffraction technique can yield 
substantial information about the structure of fractals [5], there is no doubt that the 
electromagnetic field theory will increasingly begin to be used for probing them. 

In this connection, it is well known that the scattered field carries the signature of 
the target being illuminated [6,7]. In particular, it is widely held that the back-scattering 
cross section could be an effective discriminant for the inverse target problems for 
non-fractal scatterers [8,9]. Should not the same considerations apply to targets 
possessed with fractal geometries, so that their fractal dimension may be experimentally 
determined from back-scattering measurements? 

In order to address the feasibility of this contention, we concentrate here on the 
back-scattering response of the Sierpinski gasket modelled as a collection of nodes 
resting upon a regular triangular grid [3,10]. Each node of the gasket is occupied by 
a small, lossless dielectric particle, all particles being identical. The particles are 
assumed to be small enough in size in relation to the wavelength of the incident 
radiation in the ambient medium (free space) that they can be replaced by point electric 
polarisabilities [ 113 for the scattered field computations. Furthermore, we have taken 
the particles to be spherical beads in order to avoid complications due to anisotropy. 
Since the beads interact with each other, multiple scattering [ 121 has to be considered; 
the consequent procedure is currently being labelled as the coupled dipole approxima- 
tion [13]. 
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The finite Sierpinski gasket of order L, L s  1, is composed of 3L nodes arranged 
on a regular, planar, triangular grid, and is recursively specified by the nodal placement 
function qL(x ,  y )  given by 

(1) 

where * is the spatial convolution operation [ 141; the generator gL(x,  y )  and the initiator 
q l ( x ,  y )  are given by 

q,(x,  y )  = q r - ' ( x ,  Y )  * g J x ,  Y )  L >  1 

g,(x,  y )  = S { ~ , y } + S { x - a 2 ~ - ' , y - b 2 ~ - ~ } + 6 ( x - a 2 ~ - ' , y +  b2L-'} 
(2) 

% ( X ,  Y )  = g , ( x ,  Y )  

and 6 {  . }  is the Dirac delta function. The spherical beads occupy those sites { x ,  y }  
where qL(x ,  y )  is unity, and for computational ease the origin of the coordinate system 
for the gasket of order L is shifted to its centroid after it has been generated using (1) 
and (2). The aspect ratio b / a  is such that O <  tan- '(b/a) < r / 2 ,  and each of the 3L 
spherical beads in this arrangement has a radius d which is small enough so that no 
two of them every touch. The beads are assumed identical to each other and possess 
a dielectric constant E. Since the structure of order L +  1 thus formed contains three 
gaskets of order L which are half its size, its fractal (similarity) dimension is 
log(3)/1og(2) = 1.584 96. 

If Em illuminates the mth bead, m = 1 ,2 ,3 ,  . . . , 3L, an electric dipole moment [ 111 

pm =aEm =4r&Od3(& - E O ) ( &  -2&O)-'E, (3) 

is induced at its location rm, with a being the isotropic electric polarisability of the 
spherical beads. This induced dipole moment then re-radiates, the re-radiated field 
being given as [ 151 

4r&OErad,m(r)  = [ k2(nm P m )  nm + [3nrn(nm P m )  - p m ] ( R i 2  - jkRi ' ) ]  exp(jkRm )/Rm 

(4) 

R, = I r - r, I n m = ( r - r m ) / R m .  ( 5 )  

where 

A magnetic dipole is also induced on each of the spherical beads, as also are the 
higher-order multipoles [15]; however, the bead size parameter kd is assumed to be 
sufficiently small that (3) and (4) suffice to describe the scattering response of the mth 
bead. 

The electromagnetic field incident on the gasket, E,,,( r), can be any arbitrary field 
so long as its source is not located anywhere inside or on the minimum sphere 
circumscribing the gasket. But the field E ,  actually incident on the mth bead is not 
Einc(rm) alone; it also consists of the fields Erad,n(rm), V n  Z m, re-radiated by all of the 
other beads as well [12,13]. It is then easy to see that the field exciting the mth bead 
can be self-consistently written as 
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must be solved, in order to obtain the various exciting fields E,,,. In (7),  

n m n  =(rm-rn)/Rmn 
(8) 

Rmn = I rm - rn I 
g,,,, = 3 ( k R , , , n ) - 2 - 3 j ( k R m n ) - ’ - l  h m n  =f(gmn -2 ) .  

Once the solution of ( 7 )  has been obtained, the total scattered field outside the 
circumscribing sphere can be computed simply as [ 121 

4 r r ~ ~ ~ ~ , ( r )  = a { [ k ’ ( n ,  x E,)  x n, 
m 

+[3nm(nm * E,,,)-E,](R~’-jkR,’)] exp(jkR,)/R,} (9) 

which, for k r + a ,  can be simplified to 

4mOESC(r)  = ak2r-’  exp(jkr) {exp(-jkr, r / r ) [ E , , ,  - r ( r .  Em)/r2]}. (10) 
m 

It is again emphasised here that, in deriving (9), there are no restrictions placed on 
the dimensions a and b of the triangular grid apart from that neither be zero; the only 
limitation here is that the radius d of each of the beads be sufficiently small so that 
its scattering response can be adequately described via (3 )  and (4). Thus while the 
treatment of the individual bead here is in the long-wavelength approximation [ 151, 
the overall size of the ensemble could even be in the high-frequency regime. 

Equations ( 7 )  and (10) were programmed on a DEC VAX 11/730 minicomputer 
and the exciting fields E ,  as well as the scattering pattern F ( 0 ,  cp) = 
limkl+m[ kr exp( -jkr)]Esc( r, 8, cp) were computed for an incident plane wave travelling 
in the + z  direction, thus propagating normally to the z = 0 plane with unit amplitude 
at the origin. This particular configuration was chosen because the wave is then incident 
normally on the whole gasket and not merely on any projection of it. 

Shown in figure 1 are the plots of the normalised back-scattering cross section 

2, = (2r/ka)’/F(O, 0)l2 ( 1 1 )  

as a function of the normalised frequency ka, for the gasket evolutionary levels L 
ranging from 1-4, when a = b and d = (0 .1)(a2+ b’)”’. The incident plane wave is 
either E,,, = i exp(jkz) or E,,,= j exp(jkz); in either case, it is observed that 2, is 
independent of the incident polarisation. This is because the spherical beads, modelled 
as electric dipoles, are very weak scatterers and the depolarising effect of the multiple 
scattering between the beads does not turn out to be markedly noticeable at such low 
frequencies: although ka ranges from 0.05-2.15 in this figure, kd, the size parameter 
of the beads, does not exceed 0.3. 

From this figure it turns out that the normalised back-scattering cross section can 
be set down as 

where ci is a constant to be computed from the back-scattering cross section when 
L = 1 ;  here, ci = 1.6752 x lo-’. Thus, the hierarchy of the evolutionary levels is preserved 
in 3 ,  as the exponent of 3 in the RHS of (12); the exponent 4 of ka in (12) merely 
denotes that the calculations were made by approximating the scatterers by point 
electric dipoles. 
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Figure 1. Computed values of 5,(ka) for the Sierpinski gasket modelled as an ensemble 
of identical spherical beads. The values of L used are marked on the graphs. The gasket 
parameters Q = b, while the radius of the beads, d =$(a ’+  b2)”*.  ( Q )  Einc = i exp( j k z ) ,  
( b )  Einc = j exp( j k z ) .  

Let us now try to simulate a simple back-scattering measurement on the Sierpinski 
gasket. Suppose at a frequency wL only the gasket of order L is resolvable and 3, 
measured. Next, the frequency is doubled to wL+L = 201, so that the gasket of the next 
higher order becomes resolvable. Taking into account that the overall dimension of 
the structure, and hence ka, remains constant it can be seen from (12) that 
[3L+,(ka)/3L(ka)]”* = 3 and the ratio 4 1 0 g [ ~ ~ + , ( k a ) / 3 , ( k a ) ] / l o g ( w ~ + ~ / w ~ )  would 
be equal to the fractal dimension. 

The extension of such an experiment to a rigorously self-similar fractal with an 
inherent scale factor s is obvious. Provided s is known a priori, measurements of 3 
should be made at two frequencies, one of which is a factor s times greater than the 
other, and the fractal dimension can then be deduced. If, on the other hand, s is not 
known, or if it is suspected that the fractal may not be rigorously self-similar, 
then measurements of 5 should be made at discrete frequencies w , ,  i = 1,2,3, .  . . , 
spread over as wide a range as possible, and the successive ratios 
f l0g[3~+,(ka)/3~(ka)]/log(w~,,/w,) should be plotted against i. Caution should be 
exercised in interpreting these ratios, however, because of the differences which exist 
between self-similar and self-affine fractals [ 161. Should the fractal be strongly self- 
affine, i.e. it is possibly a perturbation of a self-similar fractal, then the computed ratios 
would not deviate significantly from their mean value, which can then be thought of 
as an experimentally measured fractal dimension. But if that is not the case and the 
fractal is merely self-affine, then the ratios should be thought of as a sequence of local 
fractal dimensions, possibly converging to some global fractal dimension, if any. 
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